

Biaxial compressive strain tuning of neutral and charged excitons in single-layer transition metal dichalcogenides

Reyes Calvo

Departamento de Física Aplicada (DFA) Instituto Universitario de Materiales (IUMA) Universidad de Alicante

2D semiconductors

A. Castellanos-Gomez, Nature Photonics, 10, 2016

2D semiconductors

MoS₂

100 mV

10 mV

Transition Metal Dichalcogenides (TMDs)

M: Mo, W

X: S, Se, Te

B. Radisavljevic et al., Nature Nano. 6, 147 (2011)

Mak et al. Phys. Rev. Lett. 105, 136805 (2010)

At the single layer limit:

Direct Bandgap

F. Bonaccorso et al. (2016). Advanced Materials, 28(29)

At the single layer limit:

Direct Bandgap

Reduced dielectric screening

Chernikov et al. PRL 113, 076802 (2014)

At the single layer limit:

- Direct Bandgap
- Reduced dielectric screening
- Bound states: excitons

$$E_{\text{exciton}} = E_{\text{gap}} - E_{\text{binding}}$$

 $E_{\text{binding}} (\text{MoS}_2) \sim 500 \text{ meV} >> \text{k}_{\text{B}}\text{T}$

Chernikov et al. PRL 113, 076802 (2014)

Absorption

MoS₂

Photoluminescence

Mak et al. Phys. Rev. Lett. 105, 136805 (2010)

Mak et al. Phys. Rev. Lett. 105, 136805 (2010)

Xu et al. Nature Physics **10**, 343–350 (2014)

Du, J (2021). Small Methods, 5(1), 2000919.v

 $K = E \times \frac{A}{L}$

Single-layer TMDs exhibit a remarkable resilience to mechanical deformation.

Depending on degrees of freedom

Tensile strain 0.5 ∧ ∽[™] -0.5 ∨ WS₂, a = 3.1800 Å strain = 0.0 %3 (f) WSe₂: energy (eV) 2 1.6 $E - E_F [eV]$ 1.2 0.8 -1 0.4 -2 2 3 -3 Strain (%)

Zollner, K., Junior, P. E. F., & Fabian, J. (2019). Physical Review B, 100(19), 195126.

Κ

Μ

K'

WSe₂: energy (eV)

Tensile strain WS_2 , a = 3.2050 Å strain = +0.8 % 3 (f) 2 1.6 E - E_F [eV] 1.2 0.8 -1 0.4 -2 2 3 -3 Strain (%)

Zollner, K., Junior, P. E. F., & Fabian, J. (2019). Physical Review B, 100(19), 195126.

Κ

Μ

K'

0.5 ∧ ∽[™] -0.5 ∨

Zollner, K., Junior, P. E. F., & Fabian, J. (2019). Physical Review B, 100(19), 195126.

Tensile strain

Zollner, K., Junior, P. E. F., & Fabian, J. (2019). Physical Review B, 100(19), 195126.

Zollner, K., Junior, P. E. F., & Fabian, J. (2019). Physical Review B, 100(19), 195126.

Compressive strain

Compressive strain

Zollner, K., Junior, P. E. F., & Fabian, J. (2019). Physical Review B, 100(19), 195126.

Aslan et al. PRB 98,115308 (2018) Lloyd et al. Nano Lett. 2016, 16, 5836–5841

Zollner, K., Junior, P. E. F., & Fabian, J. (2019). Physical Review B, 100(19), 195126.

Lloyd et al. Nano Lett. 2016, 16, 5836-5841

Zollner, K., Junior, P. E. F., & Fabian, J. (2019). Physical Review B, 100(19), 195126.

Compressive strain

Light spot

MoS2

Thermal expansion of Polymeric substrates:

- Large thermal coefficient
- Large Young modulus
- Expansion up to 100C
- Compression down only to 80K

Zollner, K., Junior, P. E. F., & Fabian, J. (2019). Physical Review B, 100(19), 195126.

Gant et al. Materials Today 2019

Thermal compression at lower temperatures

Compressive strain

Would this work at lower *T*?

Advantages:

- Simple preparation
- Large biaxial compressive strain
- Low temperature phenomena

³ Polycarbonate substrate deformation

α ~ 6.5 10⁻⁵ 1/K

23

²⁴ Micro-reflectance spectroscopy

Room temperature

²⁵ Micro-reflectance spectroscopy

²⁶ Micro-reflectance spectroscopy

²⁷ Strain gauge factors for excitons

- Very good strain transfer
- Unprecedent ammount of biaxial compressive strain (~1.2%)

²⁸ Micro-reflectance spectroscopy

~ ~

²⁹ Micro-reflectance spectroscopy

E _b (X _T) (meV)	on SiO2	On PC
MoS ₂	~25	~40
WS ₂	~40	~80

Binding energies for exciton and trions depend on

- Effective masses
- Dielectric screening
- Doping levels

Conclusions and outlook

 Thermal compression suitable methods to study effects of compressive biaxial strain in 2D materials

 Low temperature regime enables high spectroscopy resolution, allow study of excitonic complexes under strain: interest for valleytronics and exciton transport

• Strain engineering for many other quantum properties in low temperature phases: from phase transition to other quantum properties tuned or induced by strain

Marcos

Eudomar Henriquez

Lisa Almonte Juan David Cortes

Universitat d'Alacant Universidad de Alicante

Daniel Gosalbez Universitat d'Alacant Universidad de Alicante

Roberto D'Agosta

Euskal Herriko Universidad

Li Hao

Andres Castellanos

MINISTERIO DE CIENCIA, INNOVACIÓN **Y UNIVERSIDADES**